Multiplexed single-molecule measurements with magnetic tweezers.

نویسندگان

  • Noah Ribeck
  • Omar A Saleh
چکیده

We present a method for performing multiple single-molecule manipulation experiments in parallel with magnetic tweezers. We use a microscope with a low magnification, and thus a wide field of view, to visualize multiple DNA-tethered paramagnetic beads and apply an optimized image analysis routine to track the three-dimensional position of each bead simultaneously in real time. Force is applied to each bead using an externally applied magnetic field. Since variations in the field parameters are negligible across the field of view, nearly identical manipulation of all visible beads is possible. However, we find that the error in the position measurement is inversely proportional to the microscope's magnification. To mitigate the increased error caused by demagnification, we have developed a strategy based on tracking multiple fixed beads. Our system is capable of simultaneously manipulating and tracking up to 34 DNA-tethered beads at 60 Hz with approximately 1.5 nm resolution and with approximately 10% variation in applied force.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Forces and DNA Mechanics in Multiplexed Magnetic Tweezers

Magnetic tweezers (MT) are a powerful tool for the study of DNA-enzyme interactions. Both the magnet-based manipulation and the camera-based detection used in MT are well suited for multiplexed measurements. Here, we systematically address challenges related to scaling of multiplexed magnetic tweezers (MMT) towards high levels of parallelization where large numbers of molecules (say 10(3)) are ...

متن کامل

Magnetic Tweezers for Single-Molecule Experiments

Over the last decade, single-molecule techniques have proven their wide applicability in the study of processive motor proteins and other enzymes, yielding insight into their kinetics and mechanochemistry. In the context of force spectroscopy of protein–nucleic acid interactions, optical tweezers, magnetic tweezers, and atomic force microscopy have made important contributions. Advantages of ma...

متن کامل

Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data.

Single-molecule techniques are powerful tools that can be used to study the kinetics and mechanics of a variety of enzymes and their complexes. Force spectroscopy, for example, can be used to control the force applied to a single molecule and thereby facilitate the investigation of real-time nucleic acid-protein interactions. In magnetic tweezers, which offer straightforward control and compati...

متن کامل

A Guide to Magnetic Tweezers and Their Applications

Magnetic force spectroscopy is a rapidly developing single molecule technique that has found numerous applications at the interface of physics and biology. Since the invention of the first magnetic tweezers, a number of modifications to the approach have helped to relieve the limitations of the original design while amplifying its strengths. Inventive molecular biology solutions further advance...

متن کامل

Magnetic Tweezers for the Measurement of Twist and Torque

Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 79 9  شماره 

صفحات  -

تاریخ انتشار 2008